Homework 9

P8.1.6 Given $\mathbf{A}=3+j 5, \mathbf{B}=10-j 8$, and $\mathbf{C}=j 12$. Determine the phasors resulting from the following operations: (a) $\mathbf{A} * \mathbf{B} * \mathbf{C}$; (b) $(\mathbf{A} * \mathbf{B}) / \mathbf{C}$; (c) $(\mathbf{A} / \mathbf{B}) * \mathbf{C}$; and (d) $\mathbf{A} / \mathbf{B} / \mathbf{C}$.

Express the result in rectangular and polar forms.
Solution: $\mathbf{A}=3+j 5=5.83 \angle 59.04^{\circ}$
$B=10-j 8=12.81 \angle-38.66^{\circ}$
$C=j 12=12 \angle 90^{\circ}$
(a) $\mathbf{A} * \mathbf{B} * \mathbf{C}=896.1 \angle 110.4^{\circ} \equiv-312+j 840$
(b) $(\mathbf{A} * \mathbf{B}) / \mathbf{C}=6.22 \angle-69.62^{\circ} \equiv 2.17-j 5.83$
(c) $(\mathbf{A} / \mathbf{B}) * \mathbf{C}=5.46 \angle 187.7^{\circ} \equiv-5.41-j 0.73$
(d) $\mathbf{A} / \mathbf{B} / \mathbf{C}=0.0376+j 0.0051,0.0379 \angle 7.696^{\circ}$

P8.2.20 Determine $Z_{\text {Th }}$ looking into terminals 'ab' in Figure P8.2.20.
Solution: The admittance of L in parallel with $C-j / 20+j / 10=j 0.05 \mathrm{~S}$. It follows that $\mathbf{V}_{\mathbf{x}}=2 \mathbf{V}_{\mathbf{x} \times j 0.05 \text {, so }}$ that $\mathbf{V}_{\mathbf{x}}=0$. Hence, $Z_{T h}=1 / j 0.05=-j 20 \Omega$.

Figure P8.2.20

P8.3.12 Determine $\mathbf{V}_{\mathbf{x}}$ in Figure P8.3.12.
Solution: The 2Ω in series with $-j \Omega$ is a short circuit. It follows that $\mathbf{V}_{\mathbf{x}}=$ $=20 \angle 60^{\circ} \frac{2}{2+j 2}=10 \angle 60^{\circ}(1-j)=$ $10 \sqrt{2} \angle 15^{\circ} \mathrm{V}$.

Figure P8.3.12

P8.3.26 Determine $i_{c}(t)$ in Figure
P8.2.26, assuming $v_{S R C}(t)=$ $\sin \left(1000 t+30^{\circ}\right) V$.

Figure P8.3.26
Solution: $j \omega L=j 1000 \times 0.1=j 100 \Omega ;-j / \omega C=-j /\left(1000 \times 10^{-5}\right)=$ -j100 Ω; it follows that the parallel impedance of L and C is infinite. The circuit reduces to that shown in the frequency domain. From KVL, $\mathrm{V}_{\mathrm{SRC}}$ $=5 I_{\mathrm{x}}+5(8+1) \mathrm{I}_{\mathrm{x}}=50 \mathrm{I}_{\mathrm{x}} ; \mathrm{I}_{\mathrm{x}}=\mathrm{V}_{\mathrm{SRC}} / 50 \mathrm{~mA} ; \mathrm{V}_{\mathrm{C}}=$

 $j \times 1 \angle 30^{\circ}=1 \angle 120^{\circ} \mathrm{mA}$. Hence, $i_{c}(\mathrm{t})=\sin \left(1000 t+120^{\circ}\right) \mathrm{mA}$.

P8.4.10 Determine Z in figure P8.4.10
so that $\mathrm{V}_{0}=1 \angle-90^{\circ} \mathrm{A}$.

Solution: When terminals 'ab' are open circuited,
$\mathbf{V}_{\mathrm{Th}}=\mathbf{V}_{\mathrm{bc}}-\mathbf{V}_{\mathrm{ac}}$; from current division,
$\mathbf{I}_{\mathrm{ac}}=\frac{(4-j 3)}{8}$, and
$\mathbf{V}_{\mathrm{ac}}=\frac{j 3(4-j 3)}{8} ; \mathbf{I}_{\mathrm{bc}}=\frac{(4+j 3)}{8}$, and
$\mathbf{V}_{\mathrm{bc}}=\frac{4(4+j 3)}{8}$; it follows that $\mathbf{V}_{\mathrm{Th}}=$
$\mathbf{V}_{\mathrm{ba}}=\frac{4(4+j 3)}{8}-\frac{j 3(4-j 3)}{8}=\frac{7}{8} \mathrm{~V}$.
The impedance looking into terminals 'ab', with the current source set to zero, is (4$j 3)|\mid(4+\beta)=25 / 8 \Omega$. The circuit reduces to that shown. When $\mathbf{V}_{0}=1 \angle-90^{\circ}=-j$ V , it follows from voltage division that $\mathrm{V}_{\mathbf{0}}=-j=$ $\frac{7}{8} \frac{Z}{Z+25 / 8}$, Solving for Z gives: $Z=$ $-\frac{25(8+j 7)}{113} \Omega$.

Figure P8.4.10

Figure P8.4.10-1

Figure P8.4.10-2

P8.4.11 Derive NEC looking into terminals 'ab' in Figure P8.4.11.

Solution: KCL at the right node:
$\frac{\mathrm{V}_{\mathrm{o}}-4 \mathrm{~V}_{\mathrm{o}}}{-j 250}+\mathrm{I}_{\mathrm{x}}+$
$100 \angle 0^{\circ} \mathrm{V}$

$\frac{V_{0}}{50}=0$, where $I_{x}=\frac{100-V_{0}}{1000}$.
Figure P8.4.11
Substituting, $\frac{3 \mathrm{~V}_{\mathrm{o}}}{j 250}+\frac{100-4 \mathrm{~V}_{\mathrm{o}}}{1000}$
$+\frac{V_{0}}{50} \mathrm{~V}_{\mathrm{o}}=0$.
This gives $\mathrm{V}_{\mathrm{o}}=-4-j 3 \mathrm{~V}$.
When terminals 'ab' are
short-circuited, the dependent voltage source is

Figure P8.4.11-1 set to zero, which makes $\mathbf{I}_{\mathbf{x}}=0.1 \mathrm{~A}$. No current flows in the capacitor or in the 50 Ω resistor. It follows that $I_{N}=-I_{\phi}=-0.1 \mathrm{~A}$. Hence, $Y_{N}=\frac{0.1}{4+j 3}=\frac{1}{250}(4-j 3) \mathrm{S}$.

P8.5.6 Determine $\mathbf{I}_{\mathbf{O}}$ in Figure P8.5.6 using the mesh-current method.
Solution: The mesh-current equations are:
Mesh 1: $(2+j 2) \mathbf{I}_{\mathbf{1}}-j 2 \mathbf{I}_{\mathbf{2}}-2 \mathbf{I}_{3}=j 10$
Mesh 2: $-j 2 \mathbf{I}_{1}+(4+j 2) \mathbf{I}_{\mathbf{2}}=\mathbf{V}_{\mathbf{y}}$
Mesh 3: $-2 \mathbf{I}_{\mathbf{1}}+(2-j 4) \mathbf{I}_{\mathbf{3}}=-\mathbf{V}_{\mathbf{y}}$.
Adding:

Figure P8.5.6
For the current source, $\boldsymbol{I}_{2}-\boldsymbol{I}_{3}=5$. Solving these
equations gives $\mathbf{I}_{0}=\mathbf{I}_{\mathbf{1}}-\mathbf{I}_{\mathbf{3}}=$ $5+5 \mathrm{~A}$.

Figure P8.5.6-1

P8.5.7 Determine $v_{c}(t)$ in Figure P8.5.7 using the nodevoltage method.

Solution: $\omega L=2 \times 10^{3} \times 2 \times 10^{-3}=4 \Omega ; 1 / \omega C=$ $1 / 2 \times 10^{3} \times 100 \times 10^{-4}=5 \Omega$; the circuit in the frequency domain $10 \sin (2000 t)$ becomes as shown. The node-voltage equations are:

Figure P8.5.7

Node ' a ': $\mathrm{V}_{\mathrm{a}}=10$
Node 'b': $\mathbf{V}_{\mathbf{c}} /-j 5+\left(\mathbf{V}_{\mathbf{c}}-10\right) / j 4+\left(\mathbf{V}_{\mathbf{c}}-\mathbf{V}_{\mathbf{c}}\right) / j 4=0$
Node 'c': $\left(\mathbf{V}_{\mathbf{c}}-\mathbf{V}_{\mathrm{c}}\right) / j 4+\left(\mathbf{V}_{\mathrm{c}}-10\right) / 3=5 \mathbf{I}_{\mathrm{x}}=$ $\left(10-V_{c}\right) / j 4$. Solving these equations gives: $V_{C}=11.98+j 1.44=$ $12.1 \angle 6.86^{\circ}$, so that $v(t)=$ $12.1 \sin \left(2000 t+6.86^{\circ}\right) V$.

